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Automated Continuous Fields Prediction From
Landsat Time Series: Application to

Fractional Impervious Cover
Christopher R. Hakkenberg , Matthew P. Dannenberg, Conghe Song, and Giuseppe Vinci

Abstract— The characterization of fine temporal-resolution
land surface dynamics from broadband optical satellite sensors
is constrained by sparse acquisitions of high-quality imagery;
interscene variation in radiometric, phenological, atmospheric,
and illumination conditions; and subpixel variability in hetero-
geneous environments. In this letter, we address these concerns
by developing and testing the automatic adaptive signature
generalization and regression (AASGr) algorithm. Provided a
robust reference map corresponding to the date of one image,
AASGr automates the prediction of continuous fields maps from
imagery time series that is adaptive to the spectral and radio-
metric characteristics of each target image and thereby requires
neither atmospheric correction nor data normalization. We tested
AASGr on a 22-year Landsat time series to quantify subannual
impervious fractional cover dynamics in Houston, TX—an area
characterized by a high degree of spatial heterogeneity in surface
cover and high frequency in land cover change. The map time
series achieved high accuracy in a three-part validation procedure
and reveals spatio-temporal dynamics of urban intensification
and extensification at a level of detail previously elusive in discrete
classifications or coarse temporal-resolution map products. The
automation of continuous fields time series is enabling a new
generation of land surface products capable of characterizing
precise morphologies along a continuum of spatio-temporal
change. While AASGr was applied here to predict subpixel
impervious fractional cover from Landsat imagery, the method
is generalizable to a range of imagery and applications requiring
dense continuous fields time series with uncertainty estimates of
geophysical and biochemical characteristics, such as leaf area
index, biomass, and albedo.

Index Terms— Continuous fields, impervious cover, land
cover change, landsat, machine learning, random forests (RFs),
signature generalization, time series, urbanization.

I. INTRODUCTION

THE steady deployment of satellite remote sensing plat-
forms in recent decades has provided scientists with
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prodigious data streams of medium spatial resolution and
broadband imagery for observing change on the earth sur-
face [1]. Bitemporal change detection using image pairs has
been used effectively to quantify state change (e.g., land cover
class) or relative change in surface characteristics between
two dates, but is unable to capture higher order temporal
dynamics, including gradual change, periodicity, and change
rates [2]. Reflecting the demand for more temporally frequent
land surface data products for disparate applications from land
cover change to biophysical land surface models [3], [4],
the use of multitemporal image time series has increased
rapidly [5].

Among all medium spatial resolution satellite sensors,
the Landsat program stands out for providing consistent, multi-
decadal, high-quality land surface imagery [6]. However, even
with Landsat sensor calibration and product quality assurance
[7], the consistent characterization of multitemporal land sur-
face dynamics is impeded by interscene and interimage vari-
ation in radiometric, phenological, atmospheric, and bidirec-
tional reflectance distribution function (BRDF) and illumina-
tion conditions [8]. The general scarcity of high-quality, cloud-
free image pairs at or near interannual anniversary dates only
exacerbates the challenge of ensuring interdate consistency [9].
A number of approaches have been used to circumvent issues
associated with sparsely acquired imagery, including input
data enhancements like best-available-pixels composites, data
blending, and multisensor data fusion techniques [10], [11] as
well as compromises in model output such as the utilization of
multiyear imagery for the characterization of a single, nominal
year [12]. Despite this, interimage discrepancies may still
require onerous and potentially confounding, data correction
and normalization procedures that run the risk of exacerbating
confusion between radiometric differences among image dates
(noise) and land cover change (signal) [8].

Alongside the added value of fine temporal resolution
time-series products, land surface models at medium spatial
resolution can benefit from more precise information on land
surface characteristics than simple discrete class designations.
This is especially so in spatially heterogeneous environments,
where critical information may be lost by classifying com-
plex, intergrading land surfaces as discrete classes which
can be converted but not undergo subtle changes in inten-
sity [13], [14]. Continuous fields pixel values offer several
advantages over discrete classifications by retaining maximum
information content and more precisely characterizing subpixel
heterogeneity [15].

Due to the demand for automated workflows for producing
temporally dense, continuous fields land surface time series,
we developed the automatic adaptive signature generaliza-
tion and regression (AASGr) algorithm. AASGr builds upon
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Fig. 1. Reference map subsampling. (a) Density histogram for reference
pixel values from NLCD 2001 impervious and subsampled pixels. (b) QQ
plot for all reference pixel values versus those in the subsample.

AASG classification—a training data selection algorithm that
adapts to image noise and interscene variation [16], [17]—
to automate the prediction of continuous fields land surface
characteristics based on a single reference map and time-series
imagery. AASGr, thus, circumvents the resource-intensive and
error-prone process of manual training data selection, while
ensuring that all models in the series are individually tuned
to unique image characteristics and optimized for predictive
accuracy.

This letter consists of four components: A description of
the AASGr algorithm (Section II-A), experimental imple-
mentation to quantify subannual impervious fractional cover
dynamics over a 22-year time series in Houston, TX (Sec-
tion II-B), a three-part validation of the map time series
(Sections II-C and III), and a short discussion of applications
and implications for the novel class of products enabled by
AASGr (Section IV).

II. METHODS

A. AASGr Training Data Selection and Predictive Modeling

Provided a reference image (IR) paired with a reference
map (MR) from the same date, AASG automates training data
selection for prediction in a spatially coincident stack of target
imagery (IT ) by first delineating “stable sites”—locations
ostensibly not experiencing land cover change between the
dates of the IR and IT [17]—which are used as the basis
for signature extension from the reference date to the target
date(s). To do this, a series of image differences (�Ii ) is
created, where

�Ii = IR [x, y, zi ] − IT [x, y, zi ]; i = 1 . . . k (1)

in the xy coordinate plane for the i th among k spectral bands
(z). Under the assumption that the majority of a sufficiently
large landscape did not undergo land cover change between
the dates of the IR and IT , pixels with stable land cover
will tend to have �I values located at or near the mode of
the image difference histogram. By extension, unstable sites-
pixels having experienced significant land cover change—
possess �I values significantly dislocated from the histogram
mode. Because modal values are relative to the two images
in question, stable sites reflect relative stability between dates
rather than absolute spectral differences between images [17].
Thereafter, band-specific difference images are combined into
a multiband difference image (�I ), defined as

�I =
k�

i=1

|Mode(�I i )−�I i | (2)

where a pixel value of 0 in the �I would be expected for
a maximally stable pixel that exhibits the minimum possible
(relative) spectral difference between dates among all k bands.

Concurrently, a spatio-temporally coincident reference map
(MR) consisting of continuous or consecutive integer values
of the response variable in question is stratified into m bins
A1, . . . , Am spanning the range of pixel values in the MR .
Then, for each b = 1, . . . , m, we select pixels Pb

1 , . . . , Pb
Nb

according to

Nb =
⎢⎢⎢⎣N × 1

T

�
h,l

I (MR[h,l]� Ab)

⎤
⎥⎥⎥

(3)

Db = {(h, l):MR[h,l] ∈ Ab, �I[h,l] ≤ �̄} (4)
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(5)

where �̄ = σ�I × c, σ�I is the standard deviation of
the values in �I , c is a user-defined threshold parameter
regulating the maximum allowed total sample size N , T is the
total number of pixels in MR , �w� denotes the w rounded to
the nearest integer, and (h, l) denotes a pixel location. That is,
pixels are randomly sampled without replacement from each
of the m sets Db, whose corresponding value in the �I is less
than a threshold �̄ defining the set of stable sites. To ensure
a maximally representative training data set optimized for
prediction on independent data, the number Nb of stable site
pixels sampled from each set Db is proportional to the number
of pixels in the full MR whose values fall in Ab. For example,
for a Landsat image, the distribution of subsampled pixels
(n = 1 × 106) will closely resemble (R2 = 0.99) that of the
full data set (n = 6 × 1010), though at a fraction of the size
and consisting of only the most stable site pixels for model
training (Fig. 1). Provided that m is large enough to capture
the full distribution of values in the MR , the number of bins
for stratification is user-defined.

While a priori training data stratification and proportional
allotment provide an efficient method for sampling stable site
pixels among bins, sampled pixels P = {Pb

t } in the MR retain
their original continuous integer values. Once the location of
all stable site pixels in the MR is determined, a full training
data set is compiled from the stable site values in the MR and
spatially corresponding pixels in the IT to predict a continuous
fields target map (MT ) and associated uncertainties from the
full IT .

To summarize, the algorithmically generated training data
set exhibits three desirable properties.

1) Multi-Band Stable Sites: sampled pixels exhibit the mini-
mum relative spectral difference across multiple spectral
bands between dates in reference and target imagery.

2) Proportional Allotment: the distribution of sample values
is proportional to that of the full reference map, thereby
ensuring representation across the range of parame-
ter space for optimized prediction on an independent
dataset.

3) Random Stratified Sampling: within stratified bins of
candidate stable sites, sample selection is randomized.

AASGr is not beholden to any one sensor or regression
model, and in this experiment, predictive regression was
performed on Landsat imagery using random forests (RFs),
an ensemble of regression trees based on votes across bootstrap
replicates [18]. As an ensemble algorithm with predictors
randomly permuted at tree nodes, RF is able to efficiently
handle data noise and is noted for its record of high predictive
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Fig. 2. Houston, TX, study area. (a) Predicted impervious fractional cover
for August 28, 2011, where insets refer to the extent of validation images. (b)
Standard deviation of the RF’s predictive posterior distribution.

Fig. 3. Validation map (MV ) classification. (a) 3-m resolution validation
imagery (IV ). (b) Validation classification (CV ) at 3-m IV native resolution.
(c) 3-m binary pervious/impervious CV . (d) Resampled impervious cover
validation map (MV ) at a 30-m Landsat spatial resolution.

accuracy and generalizability [19]. These properties make it
attractive for Landsat image time series, as RF has been
shown to effectively handle collinearity among spectral bands,
noise due to atmospheric and radiometric contamination, or
georegistration issues arising from image misalignment [19].

Fig. 4. Validation results. (Left column) AASGr prediction versus NLCD
agreement and (Right column) independently classified, 3-m resolution Quick-
bird images.

TABLE I

AGREEMENT AND VALIDATION

B. Experimental Implementation

AASGr was tested on a 22-year Landsat image stack cover-
ing a 2720 km 2 portion of central Houston, TX [see Fig. 2(a)].
Houston’s spatially heterogeneous cover and its rapid growth
from 1997 to 2018 make it a compelling test case for assessing
the performance of AASGr to detect fractional impervious
cover as a continuous field. Imagery consisted of all available
radiometrically calibrated and orthorectified Landsat Collec-
tion 1 Level-1 imagery (WRS2 path/row 25/39) possessing
<10% cloud cover. In total, 66 images fulfilled these criteria.
Imagery spanned a range of phenological states (DOYs) and
atmospheric conditions, over a range of three satellites/sensors:
Landsat-5 TM between 1997 and 2011, Landsat 7 ETM+
for 1999–2012, and Landsat 8 OLI for 2013–2018. Refer-
ence maps (MR) consist of wall-to-wall subpixel impervious
fraction maps possessing continuous values between 0.00 and
1.00 from the U.S. Geological Service (USGS) National Land
Cover Database (NLCD) Percent Developed Imperviousness
product from 2001, 2006, and 2011 [12]. The three reference
maps were paired with Landsat reference imagery for each
respective year and applied to the most temporally proximate



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

target imagery (i.e., IR−2001 and MR−2001 were paired with
IT −1997 − IT −2003, IR−2006 and MR−2006 with IT −2004 −
IT −2008, and IR−2011 and MR−2011 with IT −2009 − IT −2018).

Before prediction, all clouds, cloud shadows, ETM+ SLC-
off gaps, and radiometrically saturated or contaminated pixels
were algorithmically masked based on quality assessment
bands [20]. Except for these masked areas, which are treated
as data gaps in all predicative modeling, RF regression models
yield posterior predictive distributions based on the votes of
all trees in the RF model [21]. Lacunae are interpolated post
hoc, based on temporally adjacent pixels in the prediction time
series. For this interpolation procedure, a low-pass filter using
a Gaussian kernel in a five-year window was applied to each
pixel in the temporal dimension of the full-time series.

Parameter optimization performed to balance efficiency (run
time) and predictive accuracy based on an external compar-
ison with independent NLCD maps resulted in the selection
of 140 000 pixels as the total sample size (N) and ten bins (m),
with RF hyperparameters: 300 trees per model and 1 predictor
sampled at each split. Sensitivity analysis confirmed that
model performance was largely robust to parameter values.
Among all Landsat band combinations and derived indices,
the difference of the blue and near-infrared bands yielded the
highest prediction accuracies in model testing and was thereby
adopted for all model runs. To prevent the mischaracteriza-
tion of temporarily docked waterborne vessels as terrestrial
impervious surface, a mask based on unchanged water pixels
in NLCD 2001 and 2011 maps was applied to the full-time
series.

C. Accuracy Assessment

Predictive maps were validated via a three-part accuracy
assessment. First, an in-sample out of bag (OOB) estimate of
model performance (pseudo-R2) was derived for every model
run. Second, all pixels in predictive maps were compared
with NLCD impervious maps for coincident years (i.e., 2001,
2006, and 2011), and the strength of their agreement was
assessed via adjusted R2. To maintain the independence of
training and validation data, training data were constrained
to the two NLCD-Landsat sets not corresponding to the year
of prediction, and their results averaged to produce a single
metric of agreement.

As the third test of map accuracy, three 3-m resolu-
tion Quickbird validation images (IV ) from 2005, 2007,
and 2013 were used for independent validation with spatio-
temporally coincident map subsets [Fig. 2(a)]. Cloud masks
and regions of interest for five primary land cover types (forest,
grassland, urban, water, and barren) in the IV were manually
delineated and used to train an RF classifier. The resulting
validation maps possess five-class overall accuracies of 0.83,
0.84, and 0.85 for the three dates, respectively, with the largest
confusion occurring between Barren and Urban classes—a
not uncommon result in urban classification [22]. Thereafter,
the five-class validation classification (CV ) was converted to
a binary urban–nonurban classification and resampled to a
30-m resolution validation map (MV ) based on the aggregate
of all urban (impervious) subpixels. Aggregated, binary urban–
nonurban validation maps possess overall accuracies of 0.91,
0.91, and 0.92, respectively. Subpixel impervious fraction in
the resampled MV is calculated as

MV [h,l] =
�N

p=1 C [h,l]
V p

N
(6)

Fig. 5. Continuous change in impervious cover for three dates in Houston,
TX. Intermediate colors represent the overlap between dates.

where N is the total number of pixels in CV corresponding to
pixel (h, l) in the MV . For example, for a 3-m binary CV ,
a single 30-m aggregate pixel consists of 100 subpixels,
each possessing a value of 0 (pervious) or 1 (impervious).
Summing the subpixels and dividing by 100 renders an esti-
mated subpixel impervious fraction in the MV at the coarser
30-m resolution (Fig. 3). Thus devised, AASGr-generated
maps (MT ) can be directly compared with corresponding
pixels in the validation subsets in the MV and assessed for
accuracy based on adj-R2.

III. RESULTS

In experiments, internal OOB pseudo-R2 for all 66 image
predictions ranged from 0.76 to 0.90 (μ = 0.83 and σ = 0.03)
[23]. Visual observation confirms that AASGr-generated maps
accurately reproduce known patterns in impervious surface
cover [Fig. 2(a)]. The standard deviation of posterior votes
serves as a measure of certainty [Fig. 2(b)]. When compared
to corresponding, but independent NLCD maps from dates not
used for model training, AASGr predictions showed a high
degree of agreement based on adj-R2 (Table I). As no one map
is authoritative, the agreement does not directly correspond
with accuracy and could reflect or obscure errors in any one
image or errors in both [4].

Independent accuracy assessment using three classified and
resampled fine-resolution images indicate accuracies in line
with NLCD agreement metrics, and comparable to those
observed in other studies [13]–[15], though with the added
benefit of a continuous fields output at a subannual resolution
(Table I). Scatter charts of the agreement show a slight
deviation from the 1:1 line, indicative of some boundary bias
(Fig. 4; Table I). This compression of the posterior distribution
reflects empirical limitations of ensemble classifiers that, while
optimizing total accuracy, extract predictions from the mean of
the vote posterior and thereby tend to underestimate extreme
values at the poles of the range [24].

IV. DISCUSSION

AASGr fully automates model parameterization and predic-
tion of a continuous fields response variable from time-series
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imagery, achieving high predictive accuracy in experiments
as it efficiently adapts to inconsistencies in multitemporal
imagery. Automated signature generalization algorithms are
noteworthy as streamlined workflows enable the estimation
of land surface characteristics at previously elusive spatio-
temporal resolutions. And, unlike discrete classifications, con-
tinuous fields regression is optimally suited for producing
confidence intervals critical to secondary applications—such
as estimating unbiased areal land cover change estimates or as
input maps for process-based land surface models—requiring
uncertainty estimates of state values [3], [4].

In this implementation, AASGr was tested on a Landsat
imagery time series to estimate subannual subpixel impervious
fractional cover over a 22-year period in the rapidly urbanizing
city of Houston, TX. The resulting map time series is signif-
icant in that it showcases the utility of AASGr to quantify
subannual land cover dynamics and subpixel heterogeneity
(Fig. 5). Therefore, AASGr-enabled time series are capable
of simultaneously characterizing both urban extensification
(conversion of pervious to impervious surface) and intensi-
fication (changing intensity of fractional impervious cover
in any one pixel)—a feat otherwise unattainable with hard
classifiers. This level of precision is noteworthy for the next-
generation urban land cover change applications requiring
precise characterizations of land cover change morphologies
along a continuum of spatio-temporal change. Land cover
time series that is near continuous in space and time offers
several advantages to coarse spatial resolution, temporally-
sparse time series by more precisely capturing heterogeneity in
spatially complex areas, thereby better lending themselves to
the derivation of indices of continuous surface metrology [25].

V. CONCLUSION

In this letter, we present the AASGr algorithm. AASGr is
fully automated for time-series prediction in that it is adaptive
to the spectral and radiometric characteristics of target imagery
and thereby requires neither atmospheric correction nor data
normalization. Provided a robust reference map paired with
an image from the same date, AASGr can predict highly
accurate continuous response values and associated uncertain-
ties for time-series imagery before and after the reference
date. This quality makes it attractive for diverse applications
requiring multidate land surface information, where reference
data are otherwise limited. In this implementation, we tested
AASGr for estimating fractional impervious cover in a rapidly
urbanizing city, demonstrating its capacity to characterize
heterogeneity and intensity in spatially complex areas, as well
as higher order temporal dynamics and change rates. AASGr
is not limited to estimating subpixel land cover fractions
and is amenable to a range of applications requiring dense,
continuous fields raster map time series with uncertainty
estimates including land surface characteristics like leaf area
index, biomass, and albedo.
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