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Automated Continuous Fields Prediction From
Landsat Time Series: Application to

Fractional Impervious Cover
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Abstract� The characterization of �ne temporal-resolution
land surface dynamics from broadband optical satellite sensors
is constrained by sparse acquisitions of high-quality imagery;
interscene variation in radiometric, phenological, atmospheric,
and illumination conditions; and subpixel variability in hetero-
geneous environments. In this letter, we address these concerns
by developing and testing the automatic adaptive signature
generalization and regression (AASGr) algorithm. Provided a
robust reference map corresponding to the date of one image,
AASGr automates the prediction of continuous �elds maps from
imagery time series that is adaptive to the spectral and radio-
metric characteristics of each target image and thereby requires
neither atmospheric correction nor data normalization. We tested
AASGr on a 22-year Landsat time series to quantify subannual
impervious fractional cover dynamics in Houston, TX�an area
characterized by a high degree of spatial heterogeneity in surface
cover and high frequency in land cover change. The map time
series achieved high accuracy in a three-part validation procedure
and reveals spatio-temporal dynamics of urban intensi�cation
and extensi�cation at a level of detail previously elusive in discrete
classi�cations or coarse temporal-resolution map products. The
automation of continuous �elds time series is enabling a new
generation of land surface products capable of characterizing
precise morphologies along a continuum of spatio-temporal
change. While AASGr was applied here to predict subpixel
impervious fractional cover from Landsat imagery, the method
is generalizable to a range of imagery and applications requiring
dense continuous �elds time series with uncertainty estimates of
geophysical and biochemical characteristics, such as leaf area
index, biomass, and albedo.

Index Terms� Continuous �elds, impervious cover, land
cover change, landsat, machine learning, random forests (RFs),
signature generalization, time series, urbanization.

I. INTRODUCTION

THE steady deployment of satellite remote sensing plat-
forms in recent decades has provided scientists with
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prodigious data streams of medium spatial resolution and
broadband imagery for observing change on the earth sur-
face [1]. Bitemporal change detection using image pairs has
been used effectively to quantify state change (e.g., land cover
class) or relative change in surface characteristics between
two dates, but is unable to capture higher order temporal
dynamics, including gradual change, periodicity, and change
rates [2]. Reflecting the demand for more temporally frequent
land surface data products for disparate applications from land
cover change to biophysical land surface models [3], [4],
the use of multitemporal image time series has increased
rapidly [5].

Among all medium spatial resolution satellite sensors,
the Landsat program stands out for providing consistent, multi-
decadal, high-quality land surface imagery [6]. However, even
with Landsat sensor calibration and product quality assurance
[7], the consistent characterization of multitemporal land sur-
face dynamics is impeded by interscene and interimage vari-
ation in radiometric, phenological, atmospheric, and bidirec-
tional reflectance distribution function (BRDF) and illumina-
tion conditions [8]. The general scarcity of high-quality, cloud-
free image pairs at or near interannual anniversary dates only
exacerbates the challenge of ensuring interdate consistency [9].
A number of approaches have been used to circumvent issues
associated with sparsely acquired imagery, including input
data enhancements like best-available-pixels composites, data
blending, and multisensor data fusion techniques [10], [11] as
well as compromises in model output such as the utilization of
multiyear imagery for the characterization of a single, nominal
year [12]. Despite this, interimage discrepancies may still
require onerous and potentially confounding, data correction
and normalization procedures that run the risk of exacerbating
confusion between radiometric differences among image dates
(noise) and land cover change (signal) [8].

Alongside the added value of fine temporal resolution
time-series products, land surface models at medium spatial
resolution can benefit from more precise information on land
surface characteristics than simple discrete class designations.
This is especially so in spatially heterogeneous environments,
where critical information may be lost by classifying com-
plex, intergrading land surfaces as discrete classes which
can be converted but not undergo subtle changes in inten-
sity [13], [14]. Continuous fields pixel values offer several
advantages over discrete classifications by retaining maximum
information content and more precisely characterizing subpixel
heterogeneity [15].

Due to the demand for automated workflows for producing
temporally dense, continuous fields land surface time series,
we developed the automatic adaptive signature generaliza-
tion and regression (AASGr) algorithm. AASGr builds upon
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Fig. 1. Reference map subsampling. (a) Density histogram for reference
pixel values from NLCD 2001 impervious and subsampled pixels. (b) QQ
plot for all reference pixel values versus those in the subsample.

AASG classification—a training data selection algorithm that
adapts to image noise and interscene variation [16], [17]—
to automate the prediction of continuous fields land surface
characteristics based on a single reference map and time-series
imagery. AASGr, thus, circumvents the resource-intensive and
error-prone process of manual training data selection, while
ensuring that all models in the series are individually tuned
to unique image characteristics and optimized for predictive
accuracy.

This letter consists of four components: A description of
the AASGr algorithm (Section II-A), experimental imple-
mentation to quantify subannual impervious fractional cover
dynamics over a 22-year time series in Houston, TX (Sec-
tion II-B), a three-part validation of the map time series
(Sections II-C and III), and a short discussion of applications
and implications for the novel class of products enabled by
AASGr (Section IV).

II. METHODS

A. AASGr Training Data Selection and Predictive Modeling
Provided a reference image (IR) paired with a reference

map (MR) from the same date, AASG automates training data
selection for prediction in a spatially coincident stack of target
imagery (IT ) by first delineating “stable sites”—locations
ostensibly not experiencing land cover change between the
dates of the IR and IT [17]—which are used as the basis
for signature extension from the reference date to the target
date(s). To do this, a series of image differences (�Ii ) is
created, where

�Ii = IR [x, y, zi ] � IT [x, y, zi ]; i = 1 . . . k (1)

in the xy coordinate plane for the i th among k spectral bands
(z). Under the assumption that the majority of a sufficiently
large landscape did not undergo land cover change between
the dates of the IR and IT , pixels with stable land cover
will tend to have �I values located at or near the mode of
the image difference histogram. By extension, unstable sites-
pixels having experienced significant land cover change—
possess �I values significantly dislocated from the histogram
mode. Because modal values are relative to the two images
in question, stable sites reflect relative stability between dates
rather than absolute spectral differences between images [17].
Thereafter, band-specific difference images are combined into
a multiband difference image (�I ), defined as

�I =
k�

i=1

|Mode(�I i )��I i | (2)

where a pixel value of 0 in the �I would be expected for
a maximally stable pixel that exhibits the minimum possible
(relative) spectral difference between dates among all k bands.

Concurrently, a spatio-temporally coincident reference map
(MR) consisting of continuous or consecutive integer values
of the response variable in question is stratified into m bins
A1, . . . , Am spanning the range of pixel values in the MR .
Then, for each b = 1, . . . , m, we select pixels Pb

1 , . . . , Pb
Nb

according to
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where fl� = ��I × c, ��I is the standard deviation of
the values in �I , c is a user-defined threshold parameter
regulating the maximum allowed total sample size N , T is the
total number of pixels in MR , �w� denotes the w rounded to
the nearest integer, and (h, l) denotes a pixel location. That is,
pixels are randomly sampled without replacement from each
of the m sets Db, whose corresponding value in the �I is less
than a threshold fl� defining the set of stable sites. To ensure
a maximally representative training data set optimized for
prediction on independent data, the number Nb of stable site
pixels sampled from each set Db is proportional to the number
of pixels in the full MR whose values fall in Ab. For example,
for a Landsat image, the distribution of subsampled pixels
(n = 1 × 106) will closely resemble (R2 = 0.99) that of the
full data set (n = 6 × 1010), though at a fraction of the size
and consisting of only the most stable site pixels for model
training (Fig. 1). Provided that m is large enough to capture
the full distribution of values in the MR , the number of bins
for stratification is user-defined.

While a priori training data stratification and proportional
allotment provide an efficient method for sampling stable site
pixels among bins, sampled pixels P = {Pb

t } in the MR retain
their original continuous integer values. Once the location of
all stable site pixels in the MR is determined, a full training
data set is compiled from the stable site values in the MR and
spatially corresponding pixels in the IT to predict a continuous
fields target map (MT ) and associated uncertainties from the
full IT .

To summarize, the algorithmically generated training data
set exhibits three desirable properties.

1) Multi-Band Stable Sites: sampled pixels exhibit the mini-
mum relative spectral difference across multiple spectral
bands between dates in reference and target imagery.

2) Proportional Allotment: the distribution of sample values
is proportional to that of the full reference map, thereby
ensuring representation across the range of parame-
ter space for optimized prediction on an independent
dataset.

3) Random Stratified Sampling: within stratified bins of
candidate stable sites, sample selection is randomized.

AASGr is not beholden to any one sensor or regression
model, and in this experiment, predictive regression was
performed on Landsat imagery using random forests (RFs),
an ensemble of regression trees based on votes across bootstrap
replicates [18]. As an ensemble algorithm with predictors
randomly permuted at tree nodes, RF is able to efficiently
handle data noise and is noted for its record of high predictive
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Fig. 2. Houston, TX, study area. (a) Predicted impervious fractional cover
for August 28, 2011, where insets refer to the extent of validation images. (b)
Standard deviation of the RF’s predictive posterior distribution.

Fig. 3. Validation map (MV ) classification. (a) 3-m resolution validation
imagery (IV ). (b) Validation classification (CV ) at 3-m IV native resolution.
(c) 3-m binary pervious/impervious CV . (d) Resampled impervious cover
validation map (MV ) at a 30-m Landsat spatial resolution.

accuracy and generalizability [19]. These properties make it
attractive for Landsat image time series, as RF has been
shown to effectively handle collinearity among spectral bands,
noise due to atmospheric and radiometric contamination, or
georegistration issues arising from image misalignment [19].

Fig. 4. Validation results. (Left column) AASGr prediction versus NLCD
agreement and (Right column) independently classified, 3-m resolution Quick-
bird images.

TABLE I
AGREEMENT AND VALIDATION

B. Experimental Implementation

AASGr was tested on a 22-year Landsat image stack cover-
ing a 2720 km 2 portion of central Houston, TX [see Fig. 2(a)].
Houston’s spatially heterogeneous cover and its rapid growth
from 1997 to 2018 make it a compelling test case for assessing
the performance of AASGr to detect fractional impervious
cover as a continuous field. Imagery consisted of all available
radiometrically calibrated and orthorectified Landsat Collec-
tion 1 Level-1 imagery (WRS2 path/row 25/39) possessing
<10% cloud cover. In total, 66 images fulfilled these criteria.
Imagery spanned a range of phenological states (DOYs) and
atmospheric conditions, over a range of three satellites/sensors:
Landsat-5 TM between 1997 and 2011, Landsat 7 ETM+
for 1999–2012, and Landsat 8 OLI for 2013–2018. Refer-
ence maps (MR) consist of wall-to-wall subpixel impervious
fraction maps possessing continuous values between 0.00 and
1.00 from the U.S. Geological Service (USGS) National Land
Cover Database (NLCD) Percent Developed Imperviousness
product from 2001, 2006, and 2011 [12]. The three reference
maps were paired with Landsat reference imagery for each
respective year and applied to the most temporally proximate






